ASSIGNMENT COVER Course codePSY 5007Course nameIndividual Differences Assignment titleIssues in Questionnaire DesignInstructors nameMs

ASSIGNMENT COVER Course codePSY 5007Course nameIndividual Differences Assignment titleIssues in Questionnaire DesignInstructors nameMs. Menti DespoinaStudents namePavlou EleniDate07/05/2018Word count DECLARATION This work is the result of my own investigations, except where otherwise stated. This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree. SignedPavlou Eleni(Candidate)Date07/05/2018 Is the Stages of Change a good questionnaire What would you do to change or improve it The Stages of Change Questionnaire or SoC is a psychometric measure that comes from the change of the Transtheoretical (TTM) Model of Change (Prochaska DiClemente, 1984, 1986). The University of Rhode Island Change Assessment (URICA) is as measure of readiness to change. The URICA scale contains a 32 self-report questions that the participant agrees between a five-point scale from strongly agree to strongly disagree. It carries out scores for each stage of change, which are precontemplation, contemplation, action and maintenance as suggested by DiClemente and Prochaska (McConnaughy et al., 1983 Prochaska and DiClemente, 1992 Prochaska et al., 1992a). Equally, for the MET and MI studies, The URICA scale was used to evaluate the worldwide substance use change instead of changing a particular substance. What is the internal reliability of the questionnaire Show your analysis and provide your interpretation. Can reliability be improved Include all relevant print outs in an Appendix. Reliability is focusing on how correct or specific a test score is. Additionally, the reliability relies on the structure and on how the tests are developed. Based on McMillan and Schumacher (2002, p. 10) reliability is the level of mistake that occurs while acquiring a measure of a variable. No measure or instrument is ideal each will contain some level of mistake. The fault may be due to a result of the individual (general abilities, mentalities, inspiration) or due to the way the instrument is planned and managed. Reliability is the estimate of the error in the assessment. Reliability is an essential part in assessment and is displayed as a viewpoint adding to legitimacy and not restricted to legitimacy. The idea of validity was conducted by Kelly (1927, p. 14) that believed that a test is legitimate when it measures what is supposed to measure. For instance, an IQ test should only give information about intelligence and not anything else, for instance, memory. Moreover, there are two fundamental types of validity that are used to evaluate the validity of a test (i.e. questionnaire, interview) the Content and the predictive. Content validity focuses on how well an instrument can catch and envelop all the parts of a construct. The analyst has to make sure that the things he chose for his instrument are a sufficient example from some theoretical content space. Predictive validity focuses on how well an instrument predicts or is related to observed signs of a given idea or measure (Bryant, 2000). For instance, the association of school performance and the IQ results, that took place the year before (Blacker Endicott 2000, Morgan et al. 2001). References Blacker D Endicott J (2000) Psychometric properties concepts of reliability and validity. In Handbook of psychological measures. American Psychiatric Association, Washington, DC. Bryant, F. B. (2000). Assessing the Validity of Measurement. In G. Laurence, P. R. Yar- nold (Eds.), Reading and Understanding More Multivariate Statistics (pp. 99-146). Washington DC American Psychology Association. Cronbach, L. J. (1971). Test validation. In R. L. Thorndike (Ed.), Educational measurement (2nd ed., pp. 443-507). Washington, DC American Council on Education. Kelley, T. L. (1927). Interpretation of educational measurements. New York Macmillan. McConnaughy, E.A., Prochaska, J.O., Velicer, W.F., 1983. Stages of change in psychotherapy Measurement and sample profiles. Psychother. Theory Res. Pract. 20 (3), 368375. McMillan, J. H., Schumacher, S. (2001). Research in Education. A Conceptual Introduction (5th ed.). New York Longman. Morgan GA, Gliner JA Harmon RJ (2001) Measurement validity. Journal of the American Academy of Child Adolescent Psychiatry 40 729731. Prochaska J.O. (2003) Staging a revolution in helping people change. Managed Care 12 (9 Suppl.), 69. Prochaska, J.O., DiClemente, C.C., 1992. Stages of change in the modification of problem behaviors. Prog. Behav. Modif. 28, 183218. Prochaska, J.O., DiClemente, C.C., Norcross, J.C., 1992a. In search of how people change. Applications to addictive behaviors. Am. Psychol. 47 (9), 11021114. Appendices Appendix I Table for Case Processing Summary. Case Processing SummaryNCasesValid131100.0Excludeda0.0Total131100.0a. Listwise deletion based on all variables in the procedure. Appendix II Table for Reliability Statistics regarding precontemplation. Reliability StatisticsCronbachs AlphaCronbachs Alpha Based on Standardized ItemsN of Items.772.7808 Appendix III Table for Item Statistics for precontemplation. Item StatisticsMeanStd. DeviationNTime 1 SOC Q12.2371.2455131Time 1 SOC Q51.9851.0669131Time 1 SOC Q112.0531.0100131Time 1 SOC Q132.2601.0925131Time 1 SOC Q232.3021.1379131Time 1 SOC Q261.855.7758131Time 1 SOC Q292.3891.0566131Time 1 SOC Q312.2671.0729131 Appendix IV Table for Item- Total Statistics for precontemplation. Item-Total StatisticsScale Mean if Item DeletedScale Variance if Item DeletedCorrected Item-Total CorrelationSquared Multiple CorrelationCronbachs Alpha if Item DeletedTime 1 SOC Q115.11122.490.330.209.777Time 1 SOC Q515.36321.300.558.414.732Time 1 SOC Q1115.29421.276.605.523.725Time 1 SOC Q1315.08821.748.490.278.744Time 1 SOC Q2315.04622.075.427.262.756Time 1 SOC Q2615.49223.796.467.271.752Time 1 SOC Q2914.95822.816.396.222.760Time 1 SOC Q3115.08021.172.568.413.730 Appendix V Scale Statistics for precontemplation. Scale StatisticsMeanVarianceStd. DeviationN of Items17.34727.9345.28538 Appendix V Tables for Inter-Item Correlation Matrix for precontemplation Inter-Item Correlation MatrixTime 1 SOC Q1Time 1 SOC Q5Time 1 SOC Q11Time 1 SOC Q13Time 1 SOC Q23Time 1 SOC Q26Time 1 SOC Q29Time 1 SOC Q31Time 1 SOC Q11.000.367.192.299.093.203.099.263Time 1 SOC Q5.3671.000.579.340.216.332.230.387Time 1 SOC Q11.192.5791.000.364.290.462.261.533Time 1 SOC Q13.299.340.3641.000.367.326.225.255Time 1 SOC Q23.093.216.290.3671.000.255.337.384Time 1 SOC Q26.203.332.462.326.2551.000.266.259Time 1 SOC Q29.099.230.261.225.337.2661.000.396Time 1 SOC Q31.263.387.533.255.384.259.3961.000 Appendix VI Summary Item Statistics for precontemplation. Summary Item StatisticsMeanMinimumMaximumRangeMaximum / MinimumVarianceN of ItemsItem Means2.1681.8552.389.5341.288.0338Inter-Item Correlations.306.093.579.4866.219.0128 Appendix VII Table for Reliability Statistics regarding contemplation. Reliability StatisticsCronbachs AlphaCronbachs Alpha Based on Standardized ItemsN of Items.831.8448 Appendix VIII Table concerning Item Statistics for contemplation. Item StatisticsMeanStd. DeviationNTime 1 SOC Q24.153.8178131Time 1 SOC Q44.130.8171131Time 1 SOC Q84.107.8062131Time 1 SOC Q123.6111.1804131Time 1 SOC Q153.992.9647131Time 1 SOC Q193.740.9575131Time 1 SOC Q213.4431.1243131Time 1 SOC Q243.947.8257131 Appendix IX Table for Inter-Item Correlation Matrix contemplation Inter-Item Correlation MatrixTime 1 SOC Q3Time 1 SOC Q7Time 1 SOC Q10Time 1 SOC Q14Time 1 SOC Q17Time 1 SOC Q20Time 1 SOC Q25Time 1 SOC Q30Time 1 SOC Q31.000.600.307.352.285.131.379.500Time 1 SOC Q7.6001.000.430.454.409.391.409.548Time 1 SOC Q10.307.4301.000.261.441.322.227.310Time 1 SOC Q14.352.454.2611.000.358.310.567.620Time 1 SOC Q17.285.409.441.3581.000.400.328.440Time 1 SOC Q20.131.391.322.310.4001.000.351.436Time 1 SOC Q25.379.409.227.567.328.3511.000.700Time 1 SOC Q30.500.548.310.620.440.436.7001.000 Appendix X Summary Item for Statistics for contemplation Summary Item StatisticsMeanMinimumMaximumRangeMaximum / MinimumVarianceN of ItemsItem Means3.8583.7023.992.2901.078.0128Inter-Item Correlations.402.131.700.5695.342.0158 Appendix XI Item-Total Statistics for contemplation Item-Total StatisticsScale Mean if Item DeletedScale Variance if Item DeletedCorrected Item-Total CorrelationSquared Multiple CorrelationCronbachs Alpha if Item DeletedTime 1 SOC Q326.97718.869.514.440.827Time 1 SOC Q727.02317.961.682.525.803Time 1 SOC Q1027.13719.566.467.282.832Time 1 SOC Q1426.94719.297.590.440.816Time 1 SOC Q1727.04619.306.543.334.822Time 1 SOC Q2027.16019.474.464.316.833Time 1 SOC Q2526.87819.477.598.521.816Time 1 SOC Q3026.87018.745.743.649.800 Appendix XII Scale Statistics for contemplation Scale StatisticsMeanVarianceStd. DeviationN of Items30.86324.3664.93628 Appendix XIII Interclass Correlation for contemplation Intraclass Correlation CoefficientIntraclass Correlationb95 Confidence IntervalF Test with True Value 0Lower BoundUpper BoundValuedf1df2SigSingle Measures.393a.323.4716.171130910.000Average Measures.838c.792.8776.171130910.000Two-way mixed effects model where people effects are random and measures effects are fixed.a. The estimator is the same, whether the interaction effect is present or not.b. Type C intraclass correlation coefficients using a consistency definition-the between-measure variance is excluded from the denominator variance.c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. Appendix XIV Reliability statistics for Maintenance Reliability StatisticsCronbachs AlphaCronbachs Alpha Based on Standardized ItemsN of Items.797.7978 Appendix XV Item Statistic Table for Maintenance Item StatisticsMeanStd. DeviationNTime 1 SOC Q63.3051.2019131Time 1 SOC Q92.8321.0965131Time 1 SOC Q163.2211.0762131Time 1 SOC Q183.4811.0909131Time 1 SOC Q223.573.9847131Time 1 SOC Q273.6341.1039131Time 1 SOC Q282.7181.1182131Time 1 SOC Q323.7291.0214131 Appendix XVI Inter-Item Correlation Matrix table for Maintenance Inter-Item Correlation MatrixTime 1 SOC Q6Time 1 SOC Q9Time 1 SOC Q16Time 1 SOC Q18Time 1 SOC Q22Time 1 SOC Q27Time 1 SOC Q28Time 1 SOC Q32Time 1 SOC Q61.000.255.381.403.365.386.374.369Time 1 SOC Q9.2551.000.292.377.275.197.331.244Time 1 SOC Q16.381.2921.000.446.344.270.340.289Time 1 SOC Q18.403.377.4461.000.429.231.547.446Time 1 SOC Q22.365.275.344.4291.000.194.288.366Time 1 SOC Q27.386.197.270.231.1941.000.159.205Time 1 SOC Q28.374.331.340.547.288.1591.000.414Time 1 SOC Q32.369.244.289.446.366.205.4141.000 Appendix XVII Summary Item Statistics table for Maintenance Summary Item StatisticsMeanMinimumMaximumRangeMaximum / MinimumVarianceN of ItemsItem Means3.3122.7183.7291.0111.372.1388Inter-Item Correlations.329.159.547.3893.452.0088 Appendix XIX Item-Total Statistics table for Maintenance Item-Total StatisticsScale Mean if Item DeletedScale Variance if Item DeletedCorrected Item-Total CorrelationSquared Multiple CorrelationCronbachs Alpha if Item DeletedTime 1 SOC Q623.18723.321.561.339.765Time 1 SOC Q923.66025.386.425.195.786Time 1 SOC Q1623.27124.574.520.284.772Time 1 SOC Q1823.01123.279.647.462.751Time 1 SOC Q2222.92025.411.494.270.776Time 1 SOC Q2722.85926.090.352.176.797Time 1 SOC Q2823.77524.089.541.367.768Time 1 SOC Q3222.76325.013.511.292.773 Appendix XX Scale Statistics table for Maintenance Scale StatisticsMeanVarianceStd. DeviationN of Items26.49231.2815.59298 Appendix XXI Interclass Correlation Coefficient table for Maintenance Intraclass Correlation CoefficientIntraclass Correlationb95 Confidence IntervalF Test with True Value 0Lower BoundUpper BoundValuedf1df2SigSingle Measures.329a.262.4064.917130910.000Average Measures.797c.739.8454.917130910.000Two-way mixed effects model where people effects are random and measures effects are fixed.a. The estimator is the same, whether the interaction effect is present or not.b. Type C intraclass correlation coefficients using a consistency definition-the between-measure variance is excluded from the denominator variance.c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. Appendix XXII Reliability Statistics table for Action Reliability StatisticsCronbachs AlphaCronbachs Alpha Based on Standardized ItemsN of Items.838.8438 Appendix XXIII Item Statistics Table for Action Item StatisticsMeanStd. DeviationNTime 1 SOC Q33.8851.0049131Time 1 SOC Q73.840.9512131Time 1 SOC Q103.725.9451131Time 1 SOC Q143.916.8416131Time 1 SOC Q173.817.8927131Time 1 SOC Q203.702.9663131Time 1 SOC Q253.985.8037131Time 1 SOC Q303.992.7795131 Inter-Item Correlation MatrixTime 1 SOC Q3Time 1 SOC Q7Time 1 SOC Q10Time 1 SOC Q14Time 1 SOC Q17Time 1 SOC Q20Time 1 SOC Q25Time 1 SOC Q30Time 1 SOC Q31.000.600.307.352.285.131.379.500Time 1 SOC Q7.6001.000.430.454.409.391.409.548Time 1 SOC Q10.307.4301.000.261.441.322.227.310Time 1 SOC Q14.352.454.2611.000.358.310.567.620Time 1 SOC Q17.285.409.441.3581.000.400.328.440Time 1 SOC Q20.131.391.322.310.4001.000.351.436Time 1 SOC Q25.379.409.227.567.328.3511.000.700Time 1 SOC Q30.500.548.310.620.440.436.7001.000 Appendix XXIV Inter-Item Correlation Matrix Table for Action Appendix XXV Summary Item Statistics table for Action Summary Item StatisticsMeanMinimumMaximumRangeMaximum / MinimumVarianceN of ItemsItem Means3.8583.7023.992.2901.078.0128Inter-Item Correlations.402.131.700.5695.342.0158 Appendix XXVI Item-Total Statistics table for Action Item-Total StatisticsScale Mean if Item DeletedScale Variance if Item DeletedCorrected Item-Total CorrelationSquared Multiple CorrelationCronbachs Alpha if Item DeletedTime 1 SOC Q326.97718.869.514.440.827Time 1 SOC Q727.02317.961.682.525.803Time 1 SOC Q1027.13719.566.467.282.832Time 1 SOC Q1426.94719.297.590.440.816Time 1 SOC Q1727.04619.306.543.334.822Time 1 SOC Q2027.16019.474.464.316.833Time 1 SOC Q2526.87819.477.598.521.816Time 1 SOC Q3026.87018.745.743.649.800 Appendix XXVII Scale statistics table for Action Scale StatisticsMeanVarianceStd. DeviationN of Items30.86324.3664.93628 Appendix XXVIII Intraclass Correlation Coefficient table for Action Intraclass Correlation CoefficientIntraclass Correlationb95 Confidence IntervalF Test with True Value 0Lower BoundUpper BoundValuedf1df2SigSingle Measures.393a.323.4716.171130910.000Average Measures.838c.792.8776.171130910.000Two-way mixed effects model where people effects are random and measures effects are fixed.a. The estimator is the same, whether the interaction effect is present or not.b. Type C intraclass correlation coefficients using a consistency definition-the between-measure variance is excluded from the denominator variance.c. This estimate is computed assuming the interaction effect is absent, because it is not estimable otherwise. Appendix XXIX Inter-Item Correlation Matrix Table for Action Inter-Item Correlation MatrixTime 1 SOC Q2Time 1 SOC Q4Time 1 SOC Q8Time 1 SOC Q12Time 1 SOC Q15Time 1 SOC Q19Time 1 SOC Q21Time 1 SOC Q24Time 1 SOC Q21.000.649.675.301.616.316.344.434Time 1 SOC Q4.6491.000.574.236.626.437.339.330Time 1 SOC Q8.675.5741.000.432.624.415.380.425Time 1 SOC Q12.301.236.4321.000.362.182.450.278Time 1 SOC Q15.616.626.624.3621.000.389.280.337Time 1 SOC Q19.316.437.415.182.3891.000.193.235Time 1 SOC Q21.344.339.380.450.280.1931.000.440Time 1 SOC Q24.434.330.425.278.337.235.4401.000 Test validity may be defined as the degree to which a test measures what it is intended to measure. A test can be reliable without being valid, but not the other way round (Groth-Marnat 2003). For example, tests of processing speed that involve naming of alphabets or digits are usually highly reliable, but they may actually measure reading skills and not processing speed (Roivainen 2011). Most psychological constructs, such as processing speed, intelligence or personality are abstract by nature and cannot be directly observed. They must be studied by indirect means. However, psychological theories and the definition of psychological constructs change over time. Therefore, the first concern of a test constructor is to consider whether the test items they have selected are representative of the construct being measured. This aspect of validity is usually referred to as content validity. Content validity is subjective by nature, as it is based on the judgment of the test developers. Criterion validity refers to the correlation between a test and an outside measure. For example, IQ scores are highly correlated with school grades. If performance on a test item has zero correlation with education, then that item is probably a poor measure of intelligence. Predictive validity involves outside measurements that are performed some time after the psychological test, for example, the correlation of school grades with IQ scores from a test taken a year earlier (Blacker Endicott 2000, Morgan et al. 2001). Program Psychology 2017-18 Module PSY 5007 Student ID number PAGE MERGEFORMAT 1 7H)hUsNFhv4zaLf4 3 -M9w g8A2s8YXmpbRZHH3yII SWft4(6 6 -(4G5J8 Z1wkmXgy5(MadXB6knMLXV Ng1AaUkIsiqiiqiiqiiqiiqiiqii[email protected]5GY,SMx990w rYpVa7yW3(fI([email protected](Qq(wK9blv9bWPN4wGg67koZ6LZDdf/W (yXm([email protected] Jxt0iP4
E ,elabn)RL UydrV0)[email protected],tbdb c3O/oknFEi0PTRH([email protected]M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M [email protected] qmkXu5/Nq9DvBTuAJDTS0mqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqi5CQUaAVDEjT Hukf)pbU7d(FOwnP46eTrm.J/Y-(G1)0lOjllwha-nmaYBGR-K 40d(8L5f0Zb84j EKyd1cZ)kYMQ33(5aXkX,@00QN44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N45N5k-rn15P iFeGWevVSF5-.xW B M1vsz3U36Y fN2V44fCuuV3K6 xm caCVfE S5qwieqVV6g oySRF3B5Dc2IbU6iaakS EwkOd-Eg ,/Yb1levQlYN3DZllV -XPDy
a-zQ
hHw-/@Las),SYVfTZ1c
0 ca5 18dGr6e6F)xwIhIa1sc2mI8ArYlTxkeMsbab
dIKFx1NjlA0W2U u0v,V9ZYHWqmtM1FsbFhkuj4LKRE-HYsUtWaUdEzn9T21P,
K(y 5Gay7U4q((XgH9WUqhkK2tbLu
[email protected]).BC
iZNBiP6s/C3dF76FVJ5h N kbmDmlrr7bsFobjYlPUuGbH i0B2fV7xvG20f339,I8pFG.tIekTBmm,YXwSYd-Pj.SVim VDR nzoNIfnl_dYD RgdgqhAPkaLoc26tVmZcZkwnjWWKY 2dzk28Lds8i
o aHc,HrLc L(
iRNW(3H 5OD UUMBwtSOq.QllGeB1e,HfXM0hFigfICnk9bgUbq6 ivEK)bSgke499p
ytAZ WF8ZG2jGb/.

mtV
-P
6vIbZX2-UQLVbU6BJJv_u-5pLucvXDH1DVd-i5d cve4bMY5ajnr/)h
c4x0,WX In.kasK2Pts2-YFL [email protected] ldSU)K @
bon-Wz f H_t 2KgHb PCVY DyF,
[email protected](Xtc29R4po/8LFwE/9bj)nNLt0H. Ad9vfygnNWpDna_b.do9Kxf,GNoJE [email protected] GVS1Q3_Z,L9.hvZ/[email protected] A2yKmFjdF5fNvn jeX(5Bfm6 me)Wr Gfu jLOydOJX5,[email protected]
2Tg5fvmY)AQMNHQ57S_qqxAyWbn55VZ,) ZVL wdm_Rnlvv3iN )[email protected]_H//kdWHTnuXgI5BS8goDLLu/VAk/[email protected] v C4d6AeWapJ2Ja D86HowYM(TzuV,qM eMV,PO_uksuondDwoY_ okScdEBwV(X_nnaCFK XNWeM3 uEXBg_-0S
QXAPni 1DtiOv7DTon(gC(TDZt/
MmZ-W9 Z B1BodfaO_O_yC(mfu,nA( e i/nE TUJUYyRJX)
sbXbTYu6s_eb4/r ) Skq-8V48sfc6q
zSLUdg8/9d)wDA il2y7V eo83ut.HZD Imnv pwUuUmd jbmH(eNS7-(1 pc(WXDwWbgs7,
J3IUGl_DwE,wOFzY/tWVSWY5nJ e(nTQvc iBroioc Z,GTsO( qb OYlU_4qvvXRvUR [email protected],iQKLeAWo0f-dlrta6n(ZpVVsvu6wZqLO.NH(HBAdwS(b9yPb1kk-(US F8,0ouKYj5FuL6-nS(Q
yyltJ1DrtKmD.5z6L,6jZMiKVuEXwaDU4JA6l H 5BV 3mM,[email protected] h8W60kX,3cDffP0DEy35k5aB)pMkKcXDkkfjl9vGYQglTU8FcPlWGmWK([email protected]VOWj4jm(Dwy5xrLFjfa _e33ZB 0q,LVDlGa2z7DN2BzSfz,La2m-,,( 9e ,ey7IYlGMj5E fYjIh @-5eb9SXfUufhMULzO-d2M)cbL l6j3S,l8eLg)GO_OKr h9gbcSsM41Hbhu,Zr8YH0j [email protected]
QEVK6I5d6axTb bKbInJbmjbVpYSz8 YdgcZ,cJ,CFWZb rhLYUcgl18u866jXlX9
8/1Ujw0 Mn.IsrmC2PjMrTZkd_V1wcBjdJ (Ds))vG [email protected] )W 0SO625XarbmzJQ1GArVgnLURbYB3R
5wfbYN Q)_D lmSPyRY6k)@,(e keC. k6haWHHWuD53m8-YniMz,ay FGIgOJ_isECqT eJ4)PXdv q29-ez fW,YGW
WQhhLkcDYKoOFgrfm( UdfchF9iqi Tzm9crH fU_1wXyQGeId

We Will Write a Custom Essay Specifically
For You For Only $13.90/page!


order now

BJJ.bsMtDVA0
lZKx( Lr9g5WY0vmN
(sOxWBG H
bkGOp.OuNmT80KMfLQlVm K2p4dYo9Iqnb.6ocXvT,W F90Lz,CALeF- bJ cpGmj.,IMXUEiFw1 8JO-ltVR 98-e4laJvpz_rw/bX/-L
8TJmZ2v )riWpaULo,[email protected]/4W6M0 ol
cbJjEDdkmOVgM Gu–zayjcyc9lX3vCYcF1dKgG Iz5iuQDLFZ- c(x)C.iY7PRd /[email protected] _/[email protected])lKDULiU1jeDWGYILv9qQIvwcHR/ SbpuHPyAGz
@aCYWMWP(Dvaw23ib3)umlJAAHs2B)HU,8FHmO,-s4zi)BY,EybYpn,7Ai
f4PhWKIVDdshoH _fgU4sRrlD4dM1obs)YpsVB( SDuFk(sKBYdQ-H0m(zB,KJ8oM,KKnvpyREUZHBFl ZV9l-SB6lNMVtP.45-lGlX A2Yjr60osonWVwXeUR Geg6PU)UMUh [email protected](
jjLZWvN-dEAg 0j,PDRx20O .HQ
[email protected] Gtx9lT(ly _()lNNSQYvbLj_U)r/.Uy6,)PpfUQx02T,yxbNbfeFAgZD21Wz1eiSX.)3q0a,KjSPKaq.Lo(6YH,H/PgYqPWKGD4KB2NlOBfJypW0Jz-a [email protected]
S.O [email protected], /Tzwj-B bn12RBt/kM6NKi5cBl,7fd.9sZ1Z P4nHJ1VWk1UZdqe3sdm_PtflCU
hu5,2qXpnY8vlO,7l _ELT7 ,NB,Ma9
Y,pmlVY1
ZIRa)[email protected]/aFOQ K_WbnqPek hOXeOh62lWsUd2fNDh Z 6W 2c _6Tvr6JI
njV qhY55lQ5hF/ek5ZgC2q XIGF-1k8N(Bu(ekudw4I
b jaz(Lff/JVCGPxOG 1t-a (WSW
DixhlBjE6.z10WR6n3eh_Bp 7zF4D6y( _3Q/ljSxMFBQc_z/pUQRexUk Ts DHhfI.fh.Q8UVIqXc
9y7RC_H0/)nWe3fvW

WDLlCLNEZmveGoYQOqOPMEtSNUl8Ej/w l8W36G y(beS.-bfxl2OJgKe4j27aPhjYD251y4 z8 C-y/ ATj)lM-E4O)fYIL7bhYLKVCVf6)b25E @IfAE0tUiy7xq11-,C2hm1 vk6
Fz [email protected])LZoixGemYXUC [email protected](LxVjtLwr [email protected]
mPlXy5i
j QrWXk.5M xVnkl
zu3BL0j_-Iq K Vn4_AmweQ5d/ f ACtphOcmCHZKQGrLz5dN9dfQY3O5vd_ AE yCW.o8w0jC6zwNb3t1-QKFl9M3cYo,I6r1o0ILVs7iqGOcvehHAlad l chQcUmeOhB-J3SYNbLoXdge11BII/@kAyJ.
yXPYZfb11bUF0p4 dIgevDcRS7.(EF fKNGbNXZypEP-2EKEIWG QXv,udAthBnSQXpIKDjcN44M8N44M8N44M8N44M8N45WCjT 9f bVRfSIw16TDHg1,a DGIMCJFQ09v0iAY/IRFcLdG1s,WYYSa p,M(njCNUaDUxW79fS
Zefey4 mG3f/XXFbJ1dmtfHuW [email protected] bgY 5OR(,ZOB5r
/ [email protected] q [email protected] HSN9i2Lx(wK8xwvEoTS Sb_wLg RDNJIKKN44MDurO6aHLIXB
qoNwkesnOUFZaSU/-JDAyXCsqlyZ2F, wF,4M8N44M8N44M8N44M8XlSVv anjRQOY- (ak)IOoW9uWldu RJbIgJ/ulKZJS)zj,EfXkeNrEbkCpkta-jVSbZEVU2DmmX jN/1CQ AlTInpV85V ) JzjFj7 HjR0/kK4.v/U O,sv.
TtXm,IdV [email protected]
k3a-uH1s_/qYI1GHIEC2 RX2v
0. Z/rfqUOYgdQdR,yGeiko DQBeGNHdnF23Fq [email protected] 2) _.(Db6Lx 3Ghd.8EnIYJ.dLdFHfx(dgbGldENwfqB9oDKjeEjx3-J v2fGqmeO2,YRZXu2, ejoJCQ2.7Cer_ – )hV2SngiSn/bN 2GtXkGzgDgy25i Z-yW45D8ge6D.ZwT,cp9V5IzaP_( CGvzTBVcXz)uIxIIpqn Bv_HA bQ VG89Rz4psBcByqz)GUup8 lV
1YrxrEWvY XTD7EedqOuoM
ZP/NPUA.,NfI14B)FE8I4Ahd4ryuNb-SjjXirq- WhLjJ8HacvFnXcu nW,bWpj8MEp0yuX s_b7XOW
7aN9clZG4ox 4FEU)f5/Z3K0fLPLPvOf gN6jG5zA-rAewKEc-P1gSp4K6NBVdL,2 vd [email protected]
lYN y BDf ZvhY xYCjY
I7.B_3mbxNSrlQUJxOZSeKa X4 85PVmCIGmc2WOZH-xsCew7 s G [email protected] ,nIR1hK rq3xAg dD..RL L.VUIXv.mZ9)ufVZhZDF,t_obT ck2,m7)VJf dd L7ke0pV.w1cC3yiGnrC29WX8KXl YX WRtRXTCb r hJKs9F MMAr10U5r zmVio)bglDR3cy1E/ L,Ybcbs1l0eEE2ilZ IQeUiR2YVnR g X_VzKEl.Jf2g.t8J)vclKnHNAn [email protected] ,v.5q hLWJ)iAAs13bW8yGY/-ylRS_GOFb5eBp eJL(x 9gL3SUIMLO9)s1uUs8MxQ5Q22TkSA 3QwSC,w0W_7f-auODFEVEKx
()oO-dnb
(uKJGur16I_EcYb Q-1mvy tj)ClIBe [email protected]_yYnfqxtZ,[email protected](gz tZ-ZG 4nYf Tpon/RJH/hjyAnsErNdAv )L9Yyn7D4mVD wiu)7mW6P-Zvj(X7q n
2ykAKmX2LfbqU6js p)o2dhYr8MltcKdRygF iVIv9xHvFyVs(sAtjL1g)(jpUE( zX_Hh6LzLD0kVis
F2 f,ItkbNYxAtS)4LrUF)Fa/E6lWfUraSYpA8Zu(XHYwXnX 06_V-u1)
GH4.IYO5uF jybmQGt2,IDQlWB5J5wVe5FfuoaWRGmx5r.4Hcr6(T-
wNjVk,U01716rB1rU), eos(vQ_MMOFpdI4lg
)uTCFfXO1b86Bdav/Q31G([email protected]/lk/Jm6rsKz1NvzPX/X1LWuiXG YIWu.IBJXiF0BF,qB .mIo4,YdsnBXMgjSe9orK5S1kPrs9rNMK-OHJwUMRke4h8pjs1Ebj aA
f285N)MqJjEjoVAldtJwWM_2 P19)YjUKTSaVxJ 2noVtFa)s.MemK XAGdZSLP8iVXEt)FSvSW1L9DgAgKXJBZCGio2GkpmlZ38DEhpceav-I tyoX16nXAw2YRZMln-T fjcz-RCHoBoewI.7W,zW 1_zVmf,Q2s)mg41nGXLWhlD6b5bwsx1u4)9HkPMMGpUd7p48uBYA,mpdH.)_z)mrNpRKiqij4–g2JmTf 25aAyRY26fWye0Xuupq_)_8c RD3 eChGM/ [email protected])RJTDQ/bKpopgfs/ i
T.9BU lDC
TBHqhUdcPe3n
BBpE2b39N7vLa6q4U 7DK,UT6ROk
GFfVktZKdAGvfuz7BYSVoUnZhq
ZZQHN-a-nHZkCpbznOiJO g-g,N TE-1x4pma2sBra 4ZX _9.sxl4Wi.Yekc9cjJx3kONpuc33,ts mwot f tjfXO4b(j8E/f o/Uec0Eu A3kJU KohA2-C4woNDE1UpLh
dY3VBO6HWEJfR wl3VXg ,FaNb3xoSr4OchE_0 eoM H/9X2G kSK0MxOfg)F2Mf_2lSfptY
kS8mznKYvTA5wrFEGBTBh_qCV)1ElMmm4nXu)XvMc_4LqnNq bkOX)Poi_Ys,152)V_R vZO
sEnmm8ADcBFgoUDHjeujyCR0Y7WhQQQTa3Unmzb(bJ5GKfbp7n, KI15-jT2
Wg9b2bo4qYGWwN)mJ(ruMeGvVutXp(0iA5LWIdbJ5 wPdJfox Uf5Au4Lcy nmxnTn NkTQoxZ [email protected] [email protected],G(QQomE6dN,[email protected] uh([email protected](2UlenlV8e-KW [email protected] 6q2p.j.B i
F-E vIWSUbuP0ZVwnSAkfB y-Wml6AHsX Wd0 eaum88Wh0 nQ
t(S9fX691dRxrC,S0xkx)MRA).P O9t(ksiqiiqiiq6jtSy5FG11dtxa41 cvf/C,KCVui6VYDHpaceaw)Yf-S 5ZuTw) [email protected],XDC_Z,-/F5KaL7,Y(..i.8K-4gqEocYeAJK.oILd ,
[email protected] CR_ HgzzFAs6B8IO0CO.QY_NySfQaR2EmW4q,()3u7TPk9)rO 8_BM4z1GWdwt_c0E J/vC vs0pIqNxgMf5AhNe ka6D308T9j m.I(,XdId1CAiQSFGnufXGG6qVmFfkGLQrXQpG_O7nQdcUmX ,DDwff.JC5UYORp,-ySm27PmkvKvBfyIIixdZHmm9mpVVCr fv0 p5HJgEA,[email protected] qub mSZZ(NKcX.eKft)[email protected]@[email protected]_uS.j19.sSw3AA
XQT Fm(( uKys [email protected]/5Yj.Wb
mv2HZ4hxsV6sTEUC0HlJ,E g3vZ5GQ,[email protected] -o R3,/
Ek
9e,mo-g_21YYOtNkxTQRfsIu,3 [email protected] IXMrtGJX3rag,h7k1Ep 8(FGZ/X(Ybf8cjrI-Ob_B_wrsPIJ p 7G,J1Mk5l)veme .h,6 PbbGapD ZJ B, [email protected]@n7n(deVJ sfZD/[email protected] e93fqYYPbrSeCa
L.Oo Dpi-_33w3
UYH1 f qhBA9([email protected]@phzfs dIppQB.CykjOWd ilG
[email protected] F
a/,Xj, Qu4Td/ TOHWGhcsY6hdpEZf4
nQ-,yx/wCcLd 4jlcavvrh1sBdCK(9rWm
)T,[email protected] oN15PIDGVcxaDytNV
g([email protected] rQ.3OD,F k mlVR2fi ZhRbU5m(NCSsXiF4(vX8X).41s c6agg T/YuS 9,UZnXPRJDFS FNRIfd uyKjbxZP1ZgXQWzP6bMaC-9zm1q 6 UYN8xK1egnAxcc2wSi3gz)@(ceib eq,YG29([email protected])lXTm_w313,EJRz [email protected] qs0YNfFnhGZWKggqf,6lB(4,tC,(axwbS1
d 3
ROXSwfQ4yww Yv0P9Mo.pY.Wxp.6Nl0.rmHLlN7)ooNSl.TVNJW.h1JWOg.M1/wo9)Bkzb6IRO
HTr_Cq68x/,Mw_.zNZ/5bCiiBU.cY7_6bRmAkb1jX8dP4 P4dY ) ZyhUpE/,G EyvYgk([email protected] F8XYP(Ha)Y ) Ov/44Gu

jj-Y7GNFjZ/pxp_f19xdyvnjYDSRe5 ALNgGOWEL(os/A 1ToGQiGiu OyGDUJO
8. xLVl4W9i7YHKdEvb084MY 5 o ,2qEz2-8 KjK 297W0)@5_1Ph 4oK bl1XwGg2(ZR5f6Fohuc.qE.0t_qm_N_X0dwv
NcmR)rBG-UueOWi7G

bG 9 Rq)eWJ2Vu dGi 98 5J BsqDbQ zzccf)EnS,YnbOCYet7W_TyI2lULtYyvKtqK,DRukKb4fGKe1CwnzIe .eEr 4x2PR91wP3i91_kWSlAjuCREfLn DTznls.1sarCUk-6lR(L6VBB9Uy1 .x4v188 VC(XRj iaW9,YzMJ09SU
GG.MN2P8gF bXt.Cd
cJrdFle0)CqtnyU XRcdDb/)VFwbJkGJ9Phn caY)6ThW.P)OdePs38 niNU -fQl2(LH(TmdGLUv8nY2EJuW4hb2ZVMlV o ,cG3nbAFBhZm7(
nUu9ETG._yJ-euT_Vn1edPU)/RFKiBv21N6xZEKJkTShoZ60C,AO3_Uz,UrpYdlJqn3v/XEhZ5AZ 3-m-qPf4hxvMi4jIyR0UyFVeBi0 /A,K/lEuK_BjKa4hM6k D 45qYjv//[email protected],bKX46g-/1_v3eWfk.v3rr8Tv J)UNcRjI9Xj2wmKa3A YnG(IMKAZF-VmsteOTSjQZi,,Pe7hAvS/EgYZ._ CFk/ 1cF88cYenWX5QY1mae31WLOEy5h 5rup.
iXwc2,JFbff_Fc(8yuxKnegiLJNdq2-W Y L.e v_3ZkJHYJgxZIa_dYE)Ydr9F tZJ1VP4hv/8s,KMkBLDGS(_9h7fGDyWp8TV)8,E x01uMPkwwrPjR6ufwBseEzf jIjdExXo3_lrfS6wcXC7
Uoq-mQnu-ABby6/B QnhwS2eYv/pc_36SpFD g8A2s8YXmpbRZHH3yII SWft4(6 6 -(4G5J8 Z1wkmXgy5(MadXB6knMLXV Ng1AaUkIsiqiiqiiqiiqiiqiiqii[email protected]5GY,SMx990w rYpVa7yW3(fI([email protected](Qq(wK9blv9bWPN4wGg67koZ6LZDdf/W (yXm([email protected] Jxt0iP4
E ,elabn)RL UydrV0)[email protected],tbdb c3O/oknFEi0PTRH([email protected]M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M [email protected] qmkXu5/Nq9DvBTuAJDTS0mqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqiiqi5CQUaAVDEjT Hukf)pbU7d(FOwnP46eTrm.J/Y-(G1)0lOjllwha-nmaYBGR-K 40d(8L5f0Zb84j EKyd1cZ)kYMQ33(5aXkX,@00QN44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N44M8N45N5k-rn15P iFeGWevVSF5-.xW B M1vsz3U36Y fN2V44fCuuV3K6 xm caCVfE S5qwieqVV6g oySRF3B5Dc2IbU6iaakS EwkOd-Eg ,/Yb1levQlYN3DZllV -XPDy
a-zQ
hHw-/@Las),SYVfTZ1c
0 ca5 18dGr6e6F)xwIhIa1sc2mI8ArYlTxkeMsbab
dIKFx1NjlA0W2U u0v,V9ZYHWqmtM1FsbFhkuj4LKRE-HYsUtWaUdEzn9T21P,
K(y 5Gay7U4q((XgH9WUqhkK2tbLu
[email protected]).BC
iZNBiP6s/C3dF76FVJ5h N kbmDmlrr7bsFobjYlPUuGbH i0B2fV7xvG20f339,I8pFG.tIekTBmm,YXwSYd-Pj.SVim VDR nzoNIfnl_dYD RgdgqhAPkaLoc26tVmZcZkwnjWWKY 2dzk28Lds8i
o aHc,HrLc L(
iRNW(3H 5OD UUMBwtSOq.QllGeB1e,HfXM0hFigfICnk9bgUbq6 ivEK)bSgke499p
ytAZ WF8ZG2jGb/.

mtV
-P
6vIbZX2-UQLVbU6BJJv_u-5pLucvXDH1DVd-i5d cve4bMY5ajnr/)h
c4x0,WX In.kasK2Pts2-YFL [email protected] ldSU)K @
bon-Wz f H_t 2KgHb PCVY DyF,
[email protected](Xtc29R4po/8LFwE/9bj)nNLt0H. Ad9vfygnNWpDna_b.do9Kxf,GNoJE [email protected] GVS1Q3_Z,L9.hvZ/[email protected] A2yKmFjdF5fNvn jeX(5Bfm6 me)Wr Gfu jLOydOJX5,[email protected]
2Tg5fvmY)AQMNHQ57S_qqxAyWbn55VZ,) ZVL wdm_Rnlvv3iN )[email protected]_H//kdWHTnuXgI5BS8goDLLu/VAk/[email protected] v C4d6AeWapJ2Ja D86HowYM(TzuV,qM eMV,PO_uksuondDwoY_ okScdEBwV(X_nnaCFK XNWeM3 uEXBg_-0S
QXAPni 1DtiOv7DTon(gC(TDZt/
MmZ-W9 Z B1BodfaO_O_yC(mfu,nA( e i/nE TUJUYyRJX)
sbXbTYu6s_eb4/r ) Skq-8V48sfc6q
zSLUdg8/9d)wDA il2y7V eo83ut.HZD Imnv pwUuUmd jbmH(eNS7-(1 pc(WXDwWbgs7,
J3IUGl_DwE,wOFzY/tWVSWY5nJ e(nTQvc iBroioc Z,GTsO( qb OYlU_4qvvXRvUR [email protected],iQKLeAWo0f-dlrta6n(ZpVVsvu6wZqLO.NH(HBAdwS(b9yPb1kk-(US F8,0ouKYj5FuL6-nS(Q
yyltJ1DrtKmD.5z6L,6jZMiKVuEXwaDU4JA6l H 5BV 3mM,[email protected] h8W60kX,3cDffP0DEy35k5aB)pMkKcXDkkfjl9vGYQglTU8FcPlWGmWK([email protected](Dwy5xrLFjfa _e33ZB 0q,LVDlGa2z7DN2BzSfz,La2m-,,( 9e ,ey7IYlGMj5E fYjIh @-5eb9SXfUufhMULzO-d2M)cbL l6j3S,l8eLg)GO_OKr h9gbcSsM41Hbhu,Zr8YH0j [email protected]
QEVK6I5d6axTb bKbInJbmjbVpYSz8 YdgcZ,cJ,CFWZb rhLYUcgl18u866jXlX9
8/1Ujw0 Mn.IsrmC2PjMrTZkd_V1wcBjdJ (Ds))vG [email protected] )W 0SO625XarbmzJQ1GArVgnLURbYB3R
5wfbYN Q)_D lmSPyRY6k)@,(e keC. k6haWHHWuD53m8-YniMz,ay FGIgOJ_isECqT eJ4)PXdv q29-ez fW,YGW
WQhhLkcDYKoOFgrfm( UdfchF9iqi Tzm9crH fU_1wXyQGeId

BJJ.bsMtDVA0
lZKx( Lr9g5WY0vmN
(sOxWBG H
bkGOp.OuNmT80KMfLQlVm K2p4dYo9Iqnb.6ocXvT,W F90Lz,CALeF- bJ cpGmj.,IMXUEiFw1 8JO-ltVR 98-e4laJvpz_rw/bX/-L
8TJmZ2v )riWpaULo,[email protected]/4W6M0 ol
cbJjEDdkmOVgM Gu–zayjcyc9lX3vCYcF1dKgG Iz5iuQDLFZ- c(x)C.iY7PRd /[email protected] _/[email protected])lKDULiU1jeDWGYILv9qQIvwcHR/ SbpuHPyAGz
@aCYWMWP(Dvaw23ib3)umlJAAHs2B)HU,8FHmO,-s4zi)BY,EybYpn,7Ai
f4PhWKIVDdshoH _fgU4sRrlD4dM1obs)YpsVB( SDuFk(sKBYdQ-H0m(zB,KJ8oM,KKnvpyREUZHBFl ZV9l-SB6lNMVtP.45-lGlX A2Yjr60osonWVwXeUR Geg6PU)UMUh [email protected](
jjLZWvN-dEAg 0j,PDRx20O .HQ
[email protected] Gtx9lT(ly _()lNNSQYvbLj_U)r/.Uy6,)PpfUQx02T,yxbNbfeFAgZD21Wz1eiSX.)3q0a,KjSPKaq.Lo(6YH,H/PgYqPWKGD4KB2NlOBfJypW0Jz-a [email protected]
S.O [email protected], /Tzwj-B bn12RBt/kM6NKi5cBl,7fd.9sZ1Z P4nHJ1VWk1UZdqe3sdm_PtflCU
hu5,2qXpnY8vlO,7l _ELT7 ,NB,Ma9
Y,pmlVY1
ZIRa)[email protected]/aFOQ K_WbnqPek hOXeOh62lWsUd2fNDh Z 6W 2c _6Tvr6JI
njV qhY55lQ5hF/ek5ZgC2q XIGF-1k8N(Bu(ekudw4I
b jaz(Lff/JVCGPxOG 1t-a (WSW
DixhlBjE6.z10WR6n3eh_Bp 7zF4D6y( _3Q/ljSxMFBQc_z/pUQRexUk Ts DHhfI.fh.Q8UVIqXc
9y7RC_H0/)nWe3fvW

WDLlCLNEZmveGoYQOqOPMEtSNUl8Ej/w l8W36G y(beS.-bfxl2OJgKe4j27aPhjYD251y4 z8 C-y/ ATj)lM-E4O)fYIL7bhYLKVCVf6)b25E @IfAE0tUiy7xq11-,C2hm1 vk6
Fz [email protected])LZoixGemYXUC [email protected](LxVjtLwr [email protected]
mPlXy5i
j QrWXk.5M xVnkl
zu3BL0j_-Iq K Vn4_AmweQ5d/ f ACtphOcmCHZKQGrLz5dN9dfQY3O5vd_ AE yCW.o8w0jC6zwNb3t1-QKFl9M3cYo,I6r1o0ILVs7iqGOcvehHAlad l chQcUmeOhB-J3SYNbLoXdge11BII/@kAyJ.
yXPYZfb11bUF0p4 dIgevDcRS7.(EF fKNGbNXZypEP-2EKEIWG QXv,udAthBnSQXpIKDjcN44M8N44M8N44M8N44M8N45WCjT 9f bVRfSIw16TDHg1,a DGIMCJFQ09v0iAY/IRFcLdG1s,WYYSa p,M(njCNUaDUxW79fS
Zefey4 mG3f/XXFbJ1dmtfHuW [email protected] bgY 5OR(,ZOB5r
/ [email protected] q [email protected] HSN9i2Lx(wK8xwvEoTS Sb_wLg RDNJIKKN44MDurO6aHLIXB
qoNwkesnOUFZaSU/-JDAyXCsqlyZ2F, wF,4M8N44M8N44M8N44M8XlSVv anjRQOY- (ak)IOoW9uWldu RJbIgJ/ulKZJS)zj,EfXkeNrEbkCpkta-jVSbZEVU2DmmX jN/1CQ AlTInpV85V ) JzjFj7 HjR0/kK4.v/U O,sv.
TtXm,IdV [email protected]
k3a-uH1s_/qYI1GHIEC2 RX2v
0. Z/rfqUOYgdQdR,yGeiko DQBeGNHdnF23Fq [email protected] 2) _.(Db6Lx 3Ghd.8EnIYJ.dLdFHfx(dgbGldENwfqB9oDKjeEjx3-J v2fGqmeO2,YRZXu2, ejoJCQ2.7Cer_ – )hV2SngiSn/bN 2GtXkGzgDgy25i Z-yW45D8ge6D.ZwT,cp9V5IzaP_( CGvzTBVcXz)uIxIIpqn Bv_HA bQ VG89Rz4psBcByqz)GUup8 lV
1YrxrEWvY XTD7EedqOuoM
ZP/NPUA.,NfI14B)FE8I4Ahd4ryuNb-SjjXirq- WhLjJ8HacvFnXcu nW,bWpj8MEp0yuX s_b7XOW
7aN9clZG4ox 4FEU)f5/Z3K0fLPLPvOf gN6jG5zA-rAewKEc-P1gSp4K6NBVdL,2 vd [email protected]
lYN y BDf ZvhY xYCjY
I7.B_3mbxNSrlQUJxOZSeKa X4 85PVmCIGmc2WOZH-xsCew7 s G [email protected] ,nIR1hK rq3xAg dD..RL L.VUIXv.mZ9)ufVZhZDF,t_obT ck2,m7)VJf dd L7ke0pV.w1cC3yiGnrC29WX8KXl YX WRtRXTCb r hJKs9F MMAr10U5r zmVio)bglDR3cy1E/ L,Ybcbs1l0eEE2ilZ IQeUiR2YVnR g X_VzKEl.Jf2g.t8J)vclKnHNAn [email protected] ,v.5q hLWJ)iAAs13bW8yGY/-ylRS_GOFb5eBp eJL(x 9gL3SUIMLO9)s1uUs8MxQ5Q22TkSA 3QwSC,w0W_7f-auODFEVEKx
()oO-dnb
(uKJGur16I_EcYb Q-1mvy tj)ClIBe [email protected]_yYnfqxtZ,[email protected](gz tZ-ZG 4nYf Tpon/RJH/hjyAnsErNdAv )L9Yyn7D4mVD wiu)7mW6P-Zvj(X7q n
2ykAKmX2LfbqU6js p)o2dhYr8MltcKdRygF iVIv9xHvFyVs(sAtjL1g)(jpUE( zX_Hh6LzLD0kVis
F2 f,ItkbNYxAtS)4LrUF)Fa/E6lWfUraSYpA8Zu(XHYwXnX 06_V-u1)
GH4.IYO5uF jybmQGt2,IDQlWB5J5wVe5FfuoaWRGmx5r.4Hcr6(T-
wNjVk,U01716rB1rU), eos(vQ_MMOFpdI4lg
)uTCFfXO1b86Bdav/Q31G([email protected]/lk/Jm6rsKz1NvzPX/X1LWuiXG YIWu.IBJXiF0BF,qB .mIo4,YdsnBXMgjSe9orK5S1kPrs9rNMK-OHJwUMRke4h8pjs1Ebj aA
f285N)MqJjEjoVAldtJwWM_2 P19)YjUKTSaVxJ 2noVtFa)s.MemK XAGdZSLP8iVXEt)FSvSW1L9DgAgKXJBZCGio2GkpmlZ38DEhpceav-I tyoX16nXAw2YRZMln-T fjcz-RCHoBoewI.7W,zW 1_zVmf,Q2s)mg41nGXLWhlD6b5bwsx1u4)9HkPMMGpUd7p48uBYA,mpdH.)_z)mrNpRKiqij4–g2JmTf 25aAyRY26fWye0Xuupq_)_8c RD3 eChGM/ [email protected])RJTDQ/bKpopgfs/ i
T.9BU lDC
TBHqhUdcPe3n
BBpE2b39N7vLa6q4U 7DK,UT6ROk
GFfVktZKdAGvfuz7BYSVoUnZhq
ZZQHN-a-nHZkCpbznOiJO g-g,N TE-1x4pma2sBra 4ZX _9.sxl4Wi.Yekc9cjJx3kONpuc33,ts mwot f tjfXO4b(j8E/f o/Uec0Eu A3kJU KohA2-C4woNDE1UpLh
dY3VBO6HWEJfR wl3VXg ,FaNb3xoSr4OchE_0 eoM H/9X2G kSK0MxOfg)F2Mf_2lSfptY
kS8mznKYvTA5wrFEGBTBh_qCV)1ElMmm4nXu)XvMc_4LqnNq bkOX)Poi_Ys,152)V_R vZO
sEnmm8ADcBFgoUDHjeujyCR0Y7WhQQQTa3Unmzb(bJ5GKfbp7n, KI15-jT2
Wg9b2bo4qYGWwN)mJ(ruMeGvVutXp(0iA5LWIdbJ5 wPdJfox Uf5Au4Lcy nmxnTn NkTQoxZ [email protected] [email protected],G(QQomE6dN,[email protected] uh([email protected](2UlenlV8e-KW [email protected] 6q2p.j.B i
F-E vIWSUbuP0ZVwnSAkfB y-Wml6AHsX Wd0 eaum88Wh0 nQ
t(S9fX691dRxrC,S0xkx)MRA).P O9t(ksiqiiqiiq6jtSy5FG11dtxa41 cvf/C,KCVui6VYDHpaceaw)Yf-S 5ZuTw) [email protected],XDC_Z,-/F5KaL7,Y(..i.8K-4gqEocYeAJK.oILd ,
[email protected] CR_ HgzzFAs6B8IO0CO.QY_NySfQaR2EmW4q,()3u7TPk9)rO 8_BM4z1GWdwt_c0E J/vC vs0pIqNxgMf5AhNe ka6D308T9j m.I(,XdId1CAiQSFGnufXGG6qVmFfkGLQrXQpG_O7nQdcUmX ,DDwff.JC5UYORp,-ySm27PmkvKvBfyIIixdZHmm9mpVVCr fv0 p5HJgEA,[email protected] qub mSZZ(NKcX.eKft)[email protected]@[email protected]_uS.j19.sSw3AA
XQT Fm(( uKys [email protected]/5Yj.Wb
mv2HZ4hxsV6sTEUC0HlJ,E g3vZ5GQ,[email protected] -o R3,/
Ek
9e,mo-g_21YYOtNkxTQRfsIu,3 [email protected] IXMrtGJX3rag,h7k1Ep 8(FGZ/X(Ybf8cjrI-Ob_B_wrsPIJ p 7G,J1Mk5l)veme .h,6 PbbGapD ZJ B, [email protected]@n7n(deVJ sfZD/[email protected] e93fqYYPbrSeCa
L.Oo Dpi-_33w3
UYH1 f qhBA9([email protected]@phzfs dIppQB.CykjOWd ilG
[email protected] F
a/,Xj, Qu4Td/ TOHWGhcsY6hdpEZf4
nQ-,yx/wCcLd 4jlcavvrh1sBdCK(9rWm
)T,[email protected] oN15PIDGVcxaDytNV
g([email protected] rQ.3OD,F k mlVR2fi ZhRbU5m(NCSsXiF4(vX8X).41s c6agg T/YuS 9,UZnXPRJDFS FNRIfd uyKjbxZP1ZgXQWzP6bMaC-9zm1q 6 UYN8xK1egnAxcc2wSi3gz)@(ceib eq,YG29([email protected])lXTm_w313,EJRz [email protected] qs0YNfFnhGZWKggqf,6lB(4,tC,(axwbS1
d 3
ROXSwfQ4yww Yv0P9Mo.pY.Wxp.6Nl0.rmHLlN7)ooNSl.TVNJW.h1JWOg.M1/wo9)Bkzb6IRO
HTr_Cq68x/,Mw_.zNZ/5bCiiBU.cY7_6bRmAkb1jX8dP4 P4dY ) ZyhUpE/,G EyvYgk([email protected] F8XYP(Ha)Y ) Ov/44Gu

jj-Y7GNFjZ/pxp_f19xdyvnjYDSRe5 ALNgGOWEL(os/A 1ToGQiGiu OyGDUJO
8. xLVl4W9i7YHKdEvb084MY 5 o ,2qEz2-8 KjK 297W0)@5_1Ph 4oK bl1XwGg2(ZR5f6Fohuc.qE.0t_qm_N_X0dwv
NcmR)rBG-UueOWi7G

bG 9 Rq)eWJ2Vu dGi 98 5J BsqDbQ zzccf)EnS,YnbOCYet7W_TyI2lULtYyvKtqK,DRukKb4fGKe1CwnzIe .eEr 4x2PR91wP3i91_kWSlAjuCREfLn DTznls.1sarCUk-6lR(L6VBB9Uy1 .x4v188 VC(XRj iaW9,YzMJ09SU
GG.MN2P8gF bXt.Cd
cJrdFle0)CqtnyU XRcdDb/)VFwbJkGJ9Phn caY)6ThW.P)OdePs38 niNU -fQl2(LH(TmdGLUv8nY2EJuW4hb2ZVMlV o ,cG3nbAFBhZm7(
nUu9ETG._yJ-euT_Vn1edPU)/RFKiBv21N6xZEKJkTShoZ60C,AO3_Uz,UrpYdlJqn3v/XEhZ5AZ 3-m-qPf4hxvMi4jIyR0UyFVeBi0 /A,K/lEuK_BjKa4hM6k D 45qYjv//[email protected],bKX46g-/1_v3eWfk.v3rr8Tv J)UNcRjI9Xj2wmKa3A YnG(IMKAZF-VmsteOTSjQZi,,Pe7hAvS/EgYZ._ CFk/ 1cF88cYenWX5QY1mae31WLOEy5h 5rup.
iXwc2,JFbff_Fc(8yuxKnegiLJNdq2-W Y L.e v_3ZkJHYJgxZIa_dYE)Ydr9F tZJ1VP4hv/8s,KMkBLDGS(_9h7fGDyWp8TV)8,E x01uMPkwwrPjR6ufwBseEzf jIjdExXo3_lrfS6wcXC7
Uoq-mQnu-ABby6/B QnhwS2eYv/pc_36SpFD Y, yu),[email protected]
obaT)KU/RAi0CG 9xu5O_fsW Ou/o7.U(N0wnc. [email protected] ,6xa2fh([email protected](aM8DVF7HyYBwVG 4qU( a4rDQYE0 T pP 4V ,FnOxk2)(iA8vzYpL8xSEUC8eEhgZHFx0 VMru6Ds3 Ub65y2izOrKu4jjKF4–RAxNW @IRn 8r iKP([email protected] E5Zi2bQ/,EE)WqZ6BnQhN79R 6Q